
딥마인드가 각국 기상청이 사용하는 수치예보(NWP) 방식보다 더 빠르고 더 정확하게 날씨를 예측할 수 있는 기계학습 기반의 인공지능을 개발했다. 픽사베이
그러나 기상학자들은 물리적 법칙에 기반한 기상 모델을 버리고 데이터 패턴에만 의존하는 것에 대해 우려를 표시했다. 현재 기상청이 사용하는 수치예보란 대기의 운동과 변화를 설명할 수 있는 물리학 방정식을 슈퍼컴퓨터로 풀어 미래의 기상을 예측하는 것을 말한다. 따라서 데이터가 풍부하고 컴퓨터 성능이 강력할수록 정확도가 높아진다. 그러나 대기의 움직임은 규칙대로만 움직이는 것이 아니라서 예측이 100% 정확하게 맞아떨어지지는 않는다.딥마인드 연구진은 다른 방식을 택했다. 연구진은 우선 위성과 레이더, 지상에서 측정한 기상 데이터 40년치(1979~2017)를 학습해 기상 흐름의 유형을 식별하는 훈련을 했다. 이를 통해 기압과 바람, 온도와 습도 같은 기상 변수 간의 연관성을 파악했다.그래프캐스트는 여기서 파악한 기상 패턴을 토대로 6시간 간격의 두 시점(현재와 6시간 전)에 100만곳이 넘는 지점에서 수집한 실제 기상 관측값을 분석해 6시간 후의 날씨를 예측한다. 이어 이 예측치를 다음 6시간 후의 예측 데이터로 활용하는 방식으로 향후 10일간의 날씨를 예측한다.연구진이 유럽중기예보센터(ECMWF)의 데이터로 이 과정을 수행해 10일 예보를 완성해 비교한 결과, 90% 이상에서 기상청의 수치예보 방식보다 더 정확한 예보 능력을 보여준 것으로 나타났다. 일부 고도에선 정확도가 99.7%에 이르렀다. 연구진은 또 폭염이나 한파 같은 기상이변에 대한 예측에서도 뛰어난 능력을 발휘했다고 덧붙였다.유럽중기예보센터의 매튜 챈트리는 과학전문지 뉴사이언티스트에 “이전엔 인공지능을 기존 수학적 모델을 보완하는 도구로만 생각했는데, 지난 18개월 동안 인공지능이 독립적으로 기상예보를 할 수 있는 수준에 도달한 것으로 보인다”고 말했다.

딥마인드 연구진이 개발한 기계학습 기반 일기예보 모델 '그래프캐스트'의 작동 과정. 데스크톱 컴퓨터로 불과 1분도 안돼 예측 결과를 내놓는다. 사이언스 제공
참고
https://www.science.org/content/article/ai-churns-out-lightning-fast-forecasts-good-weather-agencies
수치예보와 인공지능